NOTATION

p, density; v, velocity; p, pressure; T,temperature; 7, density of the mass flow; Z, density of impulse flow; q,
density of heat flow; h, enthalpy; A", effective coefficient of thermal conductivity; o, surface~tension: coefficient; vy,
vy, V3, rates of change of the coordinates x;, Xy, X3, respectively; u;, Uy, average velocities of liquid in front of the
first meniscus and column of liquid, respectively; vy, V,, velocities of vapor in the vapor plug and at the exit
from the capillary; o, condensation coefficient; p, molecular weight; R¥, universal gas constant; P(T), satu-
rated vapor pressure at the temperature T; Ay, Ag, Ap.m> coefficients of thermal conductivity of vapor, liquid,
and material of the porous matrix.
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COMBINED MEASUREMENT OF THERMAL PROPERTIES
OF FLUIDS

V. S. Batalov UDC 536.2.023

A dilatometric method for simultaneous determination of the heat capacity and the coefficient
of thermal expansion of fluids is described.

Rapid dilatometric methods for the determination of the thermal diffusivity of materials [1], which have
demonstrated undisputed advantages in the study of heat-transfer parameters [2], can be used as a means for
combined measurement of the properties of thermal expansion and heat capacity in fluids [3].

Among the principal proposals for such an expansion in the area of application of dilatometry (while pre-
serving such important qualities as the nondestructive and highly accurate nature of the method, which is not
based on measurement of temperatures and thermal fluxes in test objects), one should consider the compara-
tive version involving thermal change in the volume of two fluids — a standard (with known values for the volu-
metric heat capacity ¢, and for the coefficient of thermal expansion 8y) and a test fluid (the thermophysical
characteristics e and B of which are subject to determination) — under conditions where the variation of heat
content in each of them ocecurs only because of heat exchange through a boundary separating the fluids (a thin
nondeformable shell).

As a specific model for the realization of the method, it is convenient to select a system of two "im-
bedded" thin-walled metal vessels made of a material with a negligibly small coefficient of thermal expansion
in comparison with the same parameter for the fluids. The fluid with standard properties fills the outer ves-
sel 1 (Fig. 1) in such a way that the inner vessel 3 is completely immersed in the standard fluid, which is in
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Fig. 1. Block diagram of dilatometer.

Fig. 2. Kinetic curves for volumetric thermal expansion AV (t)
of a standard fluid and AVy(t) of a test fluid because of heat ex-
change through a thin shell separating them (t is time mea-
sured from the moment the inner heater is turned off).

contact with the entire external surface of 3. The role of driving force for expansion of both fluids is assigned
to electrical heating which is initiated by the electrical heater 4 mounted within the shell separating the vol-
umes of the inner and outer vessels. The initial departure of the system from thermal equilibrium is pro-
duced by a short power pulse in the heater 4.

Temperature perturbations in both fluids after this heater is shut off involve only the regions adjacent
to it and the kinetics of thermal expansion in each of the fluids depends only on the heat exchange between them
through the shell 3. Observation of the kinetic details of the thermal expansion of both fluids is accomplished
by means of the measuring tubes (capillaries) 5 and 6 fitted on the outer and inner vessels. It is pertinent to
emphasize that filling of the capillaries with the fluids is by no means a necessary part of the experiment; for
example, it is completely satisfactory to have capillaries made of glass and a drop of fluid that does not wet
glass {in particular, mercury) located halfway up each of them. The buffer region of gas (air) formed in this
way between the surface of the fluids and the mercury drops in the capillaries is extremely favorable in two
respects at the same time: first, by reducing parasitic heat transfer to the surroundings and, second, by re-
lieving the experimenter of the need to fill the capillaries with the fluids (which is frequently difficult from the
operational aspect if the test fluid is a highly viscous material).

The geometric sizes of the capillaries were chosen so that insignificant changes in the volumes of the
fluids produced displacements of the mercury drops that were noticeable under visual observation. It is ob-
vious that the visibility of observations in this case does not eliminate automatic recording of the kinetics of
fluid expansion, for example, by noninertial (fast-writing) recorders.

The features of heat exchange between the standard and test fluids are such that cessation of thermal ex-
pansion by one of them does not mean cessation of volumetric changes in the other. Along with this, the ab-
sence of thermal expansion of the fluid in the inner vessel is evidence that the total thermal flux through the
shell 3 has become zero. To eliminate the effect of heat exchange between the outer vessel and the surround-
ings, the additional electrical heater 2 is provided, which is combined with the outer shell 1 of the outer vessel.

During heat exchange between the two fluids, time and eoordinate nonuniformities of the temperature
fields in both vessels arise and it therefore makes sense to follow the previously proposed line of reasoning
[2] in calculating the behavior of the thermal expansion of one or the other of the fluids. In particular, neglect-
ing thermal deformation of the walls of the vessels (which is facilitated by the extremely small amount of ma-
terial in the walls as compared to the amount in the fluids), it is proper to consider the change in volume d?V
of an infinitely small volume element dV of a fluid (of the test fluid, for example) in the infinitesimal time dt:

&y = rdV aaif dt, )

where 8T /0t is the instantaneous value of the temperature rate of change at the location of the selected fluid
element dV [2].
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If the maximum temperature drop in the fluid at each moment of the procedure is such that there is no
effect on the temperature dependence of the parameters ST and ¢, the total value of the rate of thermal ex-
pansion Wi for the entire volume V of the fluid is calculated from the obvious transformation of the initial
equation (1):

Vv
Wr= 2L —p, S‘ T . (2)

Subsequent calculations are based on the use of the known equation of thermal conductivity, which in the
absence of heat sources within the fluid contains the coefficient of thermal conductivity A along with the heat
capacity e [4],

, %T_— = div (A grad 7). (3
t

Transforming the volume integral in Eq. (2), after substitution in it of the value of 8T/t from Eq. (3),
into the integral of the flux field q over the surface S by means of the Ostrogradskii—Gauss theorem [5], it is
easy to obtain a simple formula for caleculation of the rate of expansion Wr:

N
Cr o

4

Under conditions of heat exchange between the fluids where the change in the heat content of each of them
oceurs because of heat transfer through the surface S separating them, the rate W, of the thermal expansion of
the standard fluid is also proportional to the integral in Eq. (4) taken with a minus sign and to the ratio of the
parameters 3; and c,:

N
: € )
0
The observed property of thermal expansion of the fluids because of heat exchange between them is not

only seen with a thermally insulated (adiabatic) outer shell 1, but also in the very initial stages of breakdown
in thermal equilibrium between the two fluids occurring at the boundary 3 and particularly when the tempera-
ture of the fluid near the outer shell 1 is the same as the temperature of the shell while the temperature of the
fluid in the inner vessel is different. Disregarding the contribution from thermal deformation of the heaters
{and of the vessel walls) to the thermal expansion of the fluids (the coefficient of thermal expansion for the
solid phase materials is ordinarily two or three orders of magnitude less than that for the fluids [6]) and then
operating only with absolute values of the rates Wy and Wr, it is easy to obtain from Egs. (4) and (5)

W,=Wr N . (6)
Cy ﬁr

It is easy to observe that for a certain rate of heat release in the outer heater 2, an equilibrium condi-
tion sets in when the inner heater 4 is turned off, i.e., all the power released in heater 2 is consumed in com-
pensating for heat losses to the surroundings. At equilibrium, obviously, thermal expansion of the fluids stops
and there are no temperature gradients in their volumes. Thereby, the value of the temperature rise AT for
each of the fluids coincides for an identical (constant) initial temperature of the two. Consequently, multiplying
the numerator and denominator of the fraction in Eq. (6) by AT and considering that

AV
ATBT,O = '_V“T L ’

7,0

(7

where AV and AV, are, respectively, the absolute increases in the volumes of the test and standard fluids,
the initial volumes of which are V. and V,, we arrive at a final computational formula for determining the
volumetric heat eapacity cT of the test fluid:

W, AVr TV, (8)

e y

Cr=2Cy
T W, AV, Ve

which does not require data from measurements of temperatures and thermal fluxes in the fluids.
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By periodically repeating the alternating thermal effect on the system through both heaters (a pulsed ef-
fect by means of the inner heater and through an increase in electrical power in the outer heater for a shift in
the equilibrium heat release), it is not difficult to carry out a continuous study of the temperature behavior of
heat capacity and of the coefficient of thermal expansion for the test fluid.

The high overall accuracy of the method (the relative error in measurements of absolute linear expan-
sions during idertical time periods is no more than 0.3-0.5% so that the total error of the method can be re-
duced to 0.5-1.5% without special effort) is furthered by the fact that recording of the rates Wy and W can be
replaced by measurement of the absolute increases in volume AV,(t;) and AV (t)) during the same time t;.

In fact, it is simple to confirm the validity of the important property

Wy, _  AVelt) AV, (9
Wr AVz () AVr(ty)

by integrating both sides of Eq. (6) with respect to time over the interval t; or t,.

Among other advantages of the method, one should mention that the derivation of Eq. (8) did not require
limitation fo any specific boundary or initial conditions determining the form of one or another solution of the
equation of thermal conductivity (3).

In addition, the specific form of Eq. (8) makes it possible to calculate the heat capacity ¢ directly from
experimental curves for AVy(t) and AVy(t) plotted by fast-writing recorders (in the present work, an N-327-5
recorder) in an arbitrary scale of units without bringing in information about the design constants of the am-
plification system or of the equipment for automatic recording of the kinetic curves for expansion of the fluids.
In fact, considering the property (9) cited, all design constants to which the recorded signal containing the
quantities AV and AV 1(t)) [the quantities AV, and AV, (t;) also] inthe form of the ratio of these parameters in
Eq. (8) is proportional are cancelled out, which considerably simplifies the analysis of the experimental data.

The method described above was used to study the properties of analine in the temperature range 20-
80°C. Glycerine, with a known volumetric heat capacity of 0.72 cal/deg- cm3 [6], was selected as the standard
fluid. The typical form of the Kinetic thermal expansion curves for both fluids is shown in Fig. 2 in the stage
of heat exchange through a thin-walled glass shell separating them.

Windings of Nichrome wire acting as electrical heaters (see Fig. 1) were pressed into both the outer and
inner shells (1 mm thick). The shape of both vessels was chosen to be cylindrical with the height of the ves-
sels being 10 and 5 em, respectively, and the diameters being 10 and 6 cm.,

For measuring tubes (glass capillaries) 40 ecm long, the diameter of each was 1 mm. The drop of mer-
cury displaced in the capillaries shorted two platinum wires, which changed the resistance in an electrical
circuit. The electrical signal from the wire detector was fed to the input of an N-327-5 recorder.

The measured value for the volumetric heat capacity of analine at a temperature of 40-50°C was 0.52
cal/deg - em®, which is in good agreement with known data [6].

NOTATION

B, coefficient of thermal expansion; A, coefficient of thermal conductivity; ¢, heat capacity of material
per unit volume; g, thermal flux; t, time; V, volume; S, surface; T, temperature; W, rate of thermal expansion
of samples.
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